header bg

Scan QR code or get instant email to install app


How many quarter-acre lots can be made from \(6 \frac{\mathrm{1} }{\mathrm{2}}\) acres of land?

A 26

Quarter-acre means \(\frac{\mathrm{1} }{\mathrm{4}}\) of an acre. To find the number of quarter-acres in \(6 \frac{\mathrm{1} }{\mathrm{2}}\) acres, divide the \(6 \frac{\mathrm{1} }{\mathrm{2}}\) by \(\frac{\mathrm{1} }{\mathrm{4}}\) .
\(6 \frac{\mathrm{1} }{\mathrm{2}} \div \frac{\mathrm{1} }{\mathrm{4}}= \frac{\mathrm{13} }{\mathrm{2}} \div\frac{\mathrm{1} }{\mathrm{4}}=\frac{\mathrm{13} }{\mathrm{2}} \times \frac{\mathrm{4} }{\mathrm{1}} = \frac{\mathrm{13 \times 4} }{\mathrm{2}} =26\)
Therefore, there are 26 quarter-acre lots in \(6 \frac{\mathrm{1} }{\mathrm{2}}\) acres of land.

Related Information


Leave a Reply